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I don’t want to discuss models in detail, since they are nothing like QED
or QCD, theories that you can set your watch by (at least QED). I just
mention this one example which stimulated the use of hard-probes at RHIC.

See Baier, Schiff, Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000).

It is interesting to note that the original STAR Letter of Intent (LBL-
29651) in 1990 following Wang and Gyulassy (LBL-29390) did cite as one
objective: “the use of hard scattering of partons as a probe of high density
nuclear matter... Passage through hadronic or nuclear matter is predicted to
result in an attenuation of the jet energy and broadening of jets. Relative to
this damped case, a QGP is transparent and an enhanced yield is expected.”

Of course this is precisely the opposite of what was actually discovered at
RHIC. Furthermore, what had been observed in A+A and p+A collisions was
an enhancement of the hard scattering, a.k.a. the Cronin Effect [Phys. Rev.
D11 (1975) 3105] , rather than an attenuation. Thus, until the QCD based
models, starting with Baier, Dokshitzer, Mueller, Peigné, Schiff [Nucl. Phys.
B483 (1997) 291], which I found out about only in 1998 at the IV Workshop
on QCD when Rolf Baier asked me whether we could measure jets in A+A
collisions at RHIC, I described the original WangGyulassy Jet Quenching as

= “the vanishing of something that doesn‘t exist in the first place”.
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°In 1998 at the QCD workshop in Paris, Rolf Baier asked me
whether jets could be measured in Au+Au collisions because he
had a prediction of a QCD medium-effect on colored partons in a
hot-dense-medium with lots of unscreened color charge.

 As the expected energy in a typical jet cone R = \/(An) +(Ag)’

is ®w R?x1/ 27t x dE/dn= R?/2 x dE/dn ~ 350 GeV for R=1 at

Vs =200 GeV where the maximum Jet energy is 100 GeV, I said
that Jets can not be reconstructed in Au+Au central collisions at
RHIC —still correct after 16 years.

Hard scattering was discovered in p-p at the CERN-ISR 1972

with single particle and few particle correlations, while jets had a
long learning curve from 1977-1982, with false claims! So use
single and few particles---which we did and it WORKED!

* The solution (LHC 2010 and) RHIC c.2014 is to take smaller
cones: 60 GeV in R=04, 34 GeV in R=0.3, 15 GeV in R=0.2.
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The many different theoretical studies of energy loss of a quark or gluon
with their color charges fully exposed passing through a medium with a large
density of similarly exposed color charges (i.e. a QGP), have one thing in
common: the transport coefficient of a gluon in the medium, denoted ¢, which
is defined from the mean 4-momentum transfer? /collision but is expressed as
the mean 4-momentum transfer? per mean free path of a gluon in the medium.
Thus the mean 4-momentum transfer? for a gluon traversing length L in the
medium is, (¢*(L)) = § L = p® L/Angp, where Ang, is the mean free path for
a gluon interaction in the medium, and p, the mean momentum transfer per
collision, is the Debye screening mass acquired by gluons in the medium. In
this, the original BDMPSZ formalism, the energy loss of an outgoing parton
due to coherent gluon bremsstrahlung per unit length (z) of the medium,
—dFE /dx, takes the form:

—dE
dx

so that the total energy loss in the medium goes like L?. Also the accumulated
transverse momentum? (k ) for a gluon traversing a length L in the medium

is well approximated by (k%) =~ (¢*(L)) =4 L.

~ o, (q*(L)) = as § L = as pi* L/ Aty :
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Also, Rolf Baier thinks that it is possible for a parton to emerge from the center of the
medium without a large energy loss (i.e. no LPM) , only BH , which Salgado and
Wiedemann seem to have ignored and which is the result of multiple scattering with total
Q?=p? L/A=qL, where L is the length of the medium traversed. However, this accentuates
something that is puzzling to me. Why has nobody ever seen evidence for this?

A simple estimate shows that the (k%) a ¢ L should be observable at
RHIC via the broadening of di-hadron azimuthal correlations. For a trigger
particle with pr,, assume that the away-parton traverses slightly more than
half the diameter of the (QQ)GP for central collisions of Au+Au, say 8 fm. This
corresponds to (k7) = ¢ L = 8 GeV?, for § = 1 GeV?/fm, compared to the
measured (k%) = 8.0+0.2 (GeV/c)? for di-hadrons in p—p collisions at /s,
=200 GeV, which should be visible as an azimuthal width ~ /2 larger in
Au+Au than in p — p collisions . So far the systematic uncertainties due to
the flow background, vy, vs...v,, for di-hadron measurements, or the very
large pr ~ 100 GeV where di-jets are measured have obscured this signal.
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The BDMPSZ prediction
led to the most important
innovation at RHIC: the
use of hard-scattering as
an 1n-situ probe of the
medium 1n RHI collisions
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n° are suppressed in Au+Au eg 200 GeV
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70 are suppressed in Au+Au eg 200 GeV
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After a decade of the ratio R, , we are
now paying more attention to Opy the
shift in the p; spectrum as an indicator
of energy loss in the QGP
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<24 PHENIX Au+Au, \/s,, =200 GeV, 0-10% most central

=
0 2.2~ didirecty 0-5% cent (arXiv:1205.5759) ¥ JAp 0-20% cent. (PRL98, 232301) .
o[ #7° (PRL101, 232301) & o 0-20% cent. (PRC84, 044902) P artld? ID
| §im (PRC82, 011902) § ez (PRC84, 044905) 1s crucial:
1.8 # ¢ (PRC83, 024090) { K (PRC83, 064903) .
1 6Ly P (PRC83, 064903) different
" L1 .
1 al particles
1.00 behave
1 - | q]I{] [}| .- [}| ....... |{] ............................. differently
0.8 [}]
0.6
0.4y

Lo ! !
% 2 a6 8 10 12 14 16 18 20
p_(GeV/c)
Notable are that ALL particles are suppressed for p>2 GeV/c
(except for direct-vy), even electrons from ¢ and b quark decay; with
one notable exception: the protons are enhanced-(baryon anomaly)
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PHENIX PRC 87 (2013) 034911
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Agreement of ALICE h*R, , with PHENIX 7° in the overlap region
5<p;<20 GeV/c 1s incredible; BUT because invariant pyspectrum at LHC is
flatter than at RHIC, spectrum shift Op/py is ~40% larger at LHC than at
RHIC presumably due to the hotter and possibly denser medium.
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As suggested by Shuryak at this
meeting last year Op/pr scales
best with dN_,/dn but is not quite
universal op,/pp=(dN_/dn)?,
a=0.35@ 2.76 TeV,
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but curves merge at large dN_,/dn
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QCD

Cross Section in p-p collisions c.m. energy /s

The overall p-p reaction cross section
is the sum over constituent reactions
a+b—c+d
fA(z1), fiB(zy), are structure functions, the differential probabilities
for constituents a and b to carry momentum fractions z; and z»
of their respective protons, e.g. u(x1),

d3o A B WQE(QQ) " *
dx1dzod cos 6% ;aZf (21)fy (z2) 21 Zo 2% (cos 0)

>%(cos 0*), the characteristic subprocess angular distributions
and o(Q%) = 5 (15”'5 757y are predicted by QCD
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QCD

Clro PDF’s A, f,8 and FF’s D, , Dp,4 are not predictedr \/g

A P
d do C >
fa (@), £y B b/ - X lobabilities
L= oy
for const 1 and zo
_/
d’o A ro2(Q?) s
- p s 0"
dx1dzod cos 9* s g: f (xl)fb (272) 2%+ (COS )

2% (cos §*), the characteristic subprocess angular distributions
and a,(Q%) = 5 ln(lé’zr 757y are predicted by QCD
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QCD angular distributions
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Fig. 2. Characteristic QCD Subprocess angular distributions: (a) scattering; (b) spin asymmetry
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QCD 1s the correct theory of the
strong interactions which generally
works in p-p collisions at RHIC
and LHC; BUT one of the major
problems 1s that the structure and
fragmentation functions must be
put 1in by hand. So I think that pure
data-driven analyses are a better
test of the basic theory.
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DATA: CCOR NPB 209, 284 (1982)

Di PionvA;iéﬁlar Distributions <o~ $TiTvVearT
C o1 Pocae. ke

V5 =624 GeV Q D
825 <M, ,<9GeVc? S<M, <10 Gave? - 102M, <1 GeVrc? QCD angular distributions
T T T T T T T ' T ’ Smam— v 5_||||||||||||||||||||||||

4-5"’ : -4 [

(0 H ol o2 i - E
35¢ ; X
8 $ . J -
P<! s Pl or P < 3
€ . -1 25f L2} . :
2 Py
$ R . L
e * t 4 . -
2 . oalt . i
(63513 ' [

O . 4 . - 0 x - 2 1 O L] k) . £ : n-llllllIIIIIIIIIIIIIIIIII
0 Ol 02 03 04 05 C Ol G203 04 05 O Ol 02 0309 Q5 00 61 D2 DA 04 OS5
C05 8 . COS8 30089 ) z«me

d°o 1 A B, \T%(Q%)
== T Tp)—2L3%(cos 6
dx1dzod cos 6* sg‘f”‘( )y (22) 2T1To ( )

2%(cos 0*), the characteristic subprocess angular distributions

and a,(Q?) = S Tn(QA%) ATe predicted by QCD
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DATA: CCOR NPB 209, 284 (1982)
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The invariant cross section for the single-particle inclusive reaction p + p —
C + X where particle C' has transverse momentum pg near mid-rapidity, was
given by the general scaling form [54]:

d? 1 2
el F(\]/?g) where x7 = 2pr/\/s

dp*  pf

There are 2 factors: a function F' which depends only on the ratio of momenta,

and a dimensioned factor, p;", where n depends on the quantum exchanged in

the hard-scattering. For QED or Vector Gluon exchange [53], n = 4. For the

case of quark-meson scattering by the exchange of a quark [54], n=8.
[nclusion of QCD [58] into the scaling form led to the xp-scaling law

d’o 1

Vap = atem G0r)

where the “xr-scaling power” n(xr,+/s) should equal 4 in lowest order (LO)

calculations, analogous to the 1/¢* form of Rutherford Scattering in QED. The

structure and fragmentation functions, which scale as the ratios of momenta are

all in the G(x7) term. Due to higher order effects such as the running of the

coupling constant, a,(Q?), the evolution of the structure and fragmentation

@%’fuﬁ(‘zt.ions) and the initial state k7, measured values of n(zr,/s) in p+p
scollisions are in the range from 5 to 8.
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| Plot by PHENIX Phys. Rev. D86(2012) 072008 |

See the classic paper of Fritzsch and Minkowski, PLB 69 (1977) 316-320
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Collection of World’s
direct-y measurements in
(ptp / ptpbar) including
PHENIX low p; msmt.
PRL104(2010)132301and
PRC87(2013)054907
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See the classic paper of Fritzsch and Minkowski, PLB 69 (1977) 316-320

Plot by PHENIX Phys. Rev. D86(2012) 072008
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xr scaling with
n.=4.5 works for
direct-y due to

QCD non-scaling

10

HighpTLHC14 X1

Collection of World” s
direct-y measurements in
(ptp / ptpbar) including
PHENIX low p; msmt.
PRL104(2010)132301and
PRC87(2013)054907

M. J. Tannenbaum 19




3
d’o 1
E — &
dp s
21 [Ty T T T I T n=4.9 almost at
107 (@) o "
o L conformal limit
5 b % ]
S 47 0
3 i "universal" g(x,)
0 15 L —
E OF 9
@ .18 §
- 107 =
% L h* =]
w 10" " E =]
2 ~ pp(p) > 0.5(h*+h) + X (ni<1.0) \ A
oy o ® CMS7TeV(296pb) g
& 10F e cmso09Tev (2310 "‘ :
B S CDF 1.96 TeV \ B
< 10' CDF 1.8 TeV ] E
= CDF 0.63 TeV R
10° | seeeene Global power-law fit | AU
'—I‘lll[ 1 1 il lll]ll il 1 1 llllll 1 L 1 llllll —
o 5 S \s=08Tev  \s=196TeV = \s=7TeV
_J -
% J.0 promremmeme e e Beceeccencronnccncnnacncnn -
® L . ; ’ |
(&) N - =

0.5

10 10 1072 10"

X
g(x;,9) scaled emTpiricaIIy (Vs)42
6 Scaling holds in Vs=0.6-7 TeV !

U.S. DEP,

\'s/GeV)*°Ed’o/dp® / Fit

NLO ratio

35

2.5

1.5

0.5

1.8
1.6
1.4

1.2
1.0

mets). %=~ Good old x; scaling holds at LHC

p, (GeV/c) for\'s = 2.76 TeV

10 20 30 40 50 60 70 80 90
[ T I T I T I T I T [ T ] T [ T [ T I
-(b) —*— CMS7TeV (2.96 pb”) + fit
——e— CMS 0.9 TeV (231ub™) + fit

;_ CDF 1.96 TeV + fit 7
g 2.76 TeV x_ interpolations ]
B (corrected by NLO ratios) 7
- FF AKKOS ]
o —
o ]
. N

lllllll]llllllllllllll]lllllllll%
T T T T 1 1

A L R

Ratio of (\'s)*°Ed’o/dp® (\'s = 0.9, 1.96, 7 TeV /\/s = 2.75 TeV)
= \s=09TeV Vs=196TeV =— \s=7TeV

T g ol

1 Il 1 Il !

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Factor of 2 deviation from NLO

JHEPO8 2011 086

20



Note that x scaling works but the
data disagree with NLO-QCD.
Not every calculation labeled QCD
1S correct, according to me.

In Prague, Kari1 Eskola asked me
whether I believed 1n QCD. I said,
“of course but I am skeptical of

many calculations that claim to be
QCD.” __
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200 GeV PHENIX PRD76 (2007) 051106(R)

NLO pQCD
10° (by W.Vogelsang)
CTEQ6M PDF; KKP FF
10° u=p./2,p,2p :
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g 1 £ " 9.7% normalization uncertainty
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p-p Vs=62.4 GeV PHENIX PRD79 (2008) 241803

8
Py (GeVic)

Uncertainties are factorization scales for PDF and FF and renormalization scale for
a,(Q?), all represented by a parameter W, which lead to uncertainties of factor of ~2
as well as disagreements, e.g. by factor of 2 at 62.4 GeV, in NLO QCD calculations
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PQCD (mini)jet production x-section is larger than total
inelastic p-p x-section for p;,,;,~ 5-7 GeV at the LHC !

Phys.Rev., 2012, D86, 117501

)
E inclusive jet cross section
= 10°3 ——LHC Vs=7 TeV
E == “LHC Vs=8 TeV
& «« «LHC Vs=14 TeV
-— - = «LHC V8=33 TeV
'i' 10 2 R
’ 4
> 0.
50 Ghard Glnel
-f atp.~5-7 GeV
10 T
107"
[H.Jung et al, arXiv:1209.6265]
o ! Lol ! AR
1 10 10°
pt min (GeV)

Possible solutions:

—Do a real QCD calculation with
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all order log corrections
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Too many gluons at low x
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pr distribution of Drell-Yan pairs also turns

exponential pp<3 GeV/c compared over at low p; and does not diverge: In |
to scaled p-p power-law spectrum LO-QCD, p=0. In NLO, cross section is

which flattens for py<3 GeV/c infinite becal.lse color—chgrged par.tons are
- all massless in QCD unlike electrically-
1o icnt BROOKHRVEN HighpT charged particles in QED, m_=0.51 MeV/c? 4
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AuAu direct vy spectra vs centrality is



dETAA/dn = [(1 = 2) (Npart) dE-™/dn/2 + 2 (Neon) dE™ /dn]

We showed, this year, that the Constituent Quark Participant Model (Ngp)
works at mid-rapidity for A+B collisions in the range (~30 GeV) 62 .4
GeV< V! S\n< 2.76 TeV. The two component ansatz [(1-X)N_,,/2+x N ]
also works but does not imply a hard-scattering component in N, and E
distributions. It 1s instead a proxy for N as a function of centrality. The
ratio N /[(1-X)N_,./2+x N ], with X—O 08 equals 3.38 on the average

at . SNN=2OO and varies by less than 1% over the entire centrality range.

PHENIX PRC 80 (2014) 044905, also MJT QM2014 proc, QM 1984 proc!
ZL ‘;’ggﬁ:; BROOKHRATEN HighpTLHC14 PH‘)K{N 1X M. J. Tannenbaum 25
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Constituent quarks are Gell-Mann’s
quarks from Phys. Lett. 8 (1964)214,
proton=uud [Zweig’s Aces].These are
relevant for static properties and soft
physics, low Q?<2 GeV?; resolution>
0.14fm

1.6fm

Resolution ~0.5fm Resolution ~0.1fm Resolution <0.07fm

Office of

: BRO I(IIA"EH ;
J Science I\ATIONR \\\\\\\\\\\ nghpTLHC14
U.S. DEPARTMENT OF ENERGY

For hard-scattering, p>2
GeV/c, Q*=2p>>8 GeV?,
the partons (~massless
current quarks, gluons and
sea quarks) become visible

P H—\l/—E NIX M. J. Tannenbaum 26



Slide by Dennis.V. Perepelitsa, BNL

Single particles: confusion at very high-py
_GMS RIN-12-017-PAS

q 3; p-Pb | 5,,=5.02 TeV NSD 3 - w ]
E charged particles 3 L CMS Preliminary ]
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» ALICE reports no effect out to 50 GeV...
-  CMS shows a 40% enhancement above 20 GeV!
= « challenging to accommodate within nPDF frameworks baum 27
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pPb charged particle spectra

ratio (ALICE/CMS)

2||||

pp reference spectra
ratio (ALICE/CMS)

Discrepancy mainly comes from pp reference
Urgently need 5.02 TeV pp reference datal

Yen-Jie Lee (MIT) Quark Matter 2014
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In 1984 a program of Heavy ions in the CERN-SPS was approved by the DG, Herwig
Schopper, partly due to some “exciting results” from a-a collisions at the CERN-ISR
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replotted by Martin Faessler
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The large value of the ao/pp
cross sections in PLB116 was
WRONG because of an
incorrect extrapolation of p-p
measurements from vs=62.4
to 31 (aa) and 44 (ap) GeV. 1
complained about this but I
was busy making magnets at
ISABELLE at the time—a
lucky break in retrospect. This

E ppFIT E
. VA shows that sometimes
I “orwrr ] | WRONG RESULTS have a
i | | bigger impact than correct
20 3!0 4!0 5!0 6I.0 ?.IO BI.O 9.0 reSUltS because they are
P (GeV /c) EXCITING; but this does not
BCMOR PLB 185 (1987) 213 excuse making mistakes.
—_—
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participants spectators

 10-15%

ZDC Energy Sum

0 200 400 600 800 1000 1200 1400 1600 1800 2000
BBC Charge Sum

* Number of Spectators (i.e. non-participants)
N, can be measured directly in Zero Degree
Calorimeters in fixed target experiments.

* Enables unambiguous measurement of
(projectile) participants = A -Ng

* For symmetric A+A collision N_, =2 N

part projpart

* At a collider can not measure the spectators
which may be free neutrons, protons or
clusters. If Z/A of cluster is same as the beam,
it stays in the beam; but the neutrons can be
detected at zero degrees. The distribution of
Energy in Beam Beam Counters can be
measured and the centrality defined by upper
percentile of the distributions, but N, . is

model dependent and may have biases
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From PhD Thesis, Dennis V. Perepelitsa, Physics Dept. Columbia University, 2014.
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Di-Hadron, Di-Jet or recently Jet-Hadron
Correlations in AA interactions suffer from
a HUGE problem due to v,,v,,v, flow
modulations of the background which

obscure the hard-scattering away-side peak
and had led to such RHIC “discoveries™ as

“Mach Cones”, The Ridge, “Head &
Shoulders”. Uncertainties in determining
the v. modulated soft background (the bulk)
still lead to large systematic uncertainties
for the hard-scattering peaks.
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P24 Sclance Nggggls“@’,gs,'gy HighpTLHC14 PH:4ENIX M. J. Tannenbaum 33

U.S. DEPARTMENT OF ENERGY



1.04;17“5&

u 6 ’? 3<p;,pi<s4 GeV

Pb-Pb {5,,=2.76 TeV ]
é 0 L,=8ub" 2<lAni<5 1

& § | 3<plpi<dGev ATLAS  Pb-Pbys,=276TeV
5 1 L ey .
1,05 P La=BUOT o 1om

I f 9 2<lAni<5 1

- e

'ww M*ﬁ W*%

2.5 B<p?, p”dOGeV

FIG. 9. (Color online) Centrality dependence of A¢ correlations for 3 < p§,py < 4 GeV. A rapidity gap of 2 < |An| < 5
required to isolate the long-range structures of the correlation functions, i.e. the near-side peaks reflect the “ridge” instead of th
autocorrelations from jet fragments. The error bars on the data points indicate the statistical uncertainty. The superimpose

solid lines (thick-dashed lines) indicate contributions from individual v, , components (sum of the first six components). : o 0 2 F—

ATLAS PRC 86 (2012) 014907
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1+2Zv cosn(p-®,)
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If you like wiggles instead of peaks
remember that for a Dirac 6 function

5(¢-q>)=i 1+2 2 cosn(gp—®)

27 n=I
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A .Ohlson, Hard Probes 2012

r 10 <

05<p). _ <1GeVic

- STAR Preliminary

<20 GeV/c
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=P.. - D

assoc.-hadron

Awayside Gaussian Width

1F
E A AuAu,0-20%,20<p *' <40 GeV/c
0.9F e PP
= v2 & detector uncert.
0.8 l —3 trigger jet uncert.
0.7 T — Width including di-jet smearing.
0.6 ' STAR preliminary
0.5F
0.4
0.3
0.2
= A
0.1 ) °
: 1 1 l L L 'l l 1 ' L l 1 L 1 l 1 ' L l 1 L "l l L 1 1 l 1 1 1 l L
% 2 4 6 8 10 12 14 16

p; > (GeV/c)

H. Caines , QM 2011

Use Jet-hadron correlations to look for
medium-induced-broadening of the away
parton (Jet) w.respect to trigger Jet

Preliminary seems to look promising,
but final data show no evidence:
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10 < pj:t,rec <15 GeV/e o Au+Au, 0-20% u All+All, 0_20 % YaJEM-DE
05 <p™™ <1GeVic L ptp

17 o p+p — Au+Au
B detector uncertainty ---- p+p

Vv, and v, uncertainty

[trigger jet uncertainty

o 10< pjT‘*"rec <15 GeV/e
m 20< pj;”“ <40 GeV/e

(S

Awayside Gaussian Widtho ¢

0’7;_ 4<p™™ <6 GeVe B =200GeV | Z | o T v
Wb \Swx = 200 GeV :
F L v, and v, uncertaint 10-1_"81\'1N"'"'e"""""'""""""'
< 0sE- V> Y 0 2 4 6 s 10 12 14 16
3 E |1 [_] trigger jet uncertainty pEsc (GeV/c)
% 04;— ﬂ [ ] detector uncertainty T
STAR PRL 112 (2014)122301, with
= | systematic errors, is inconclusive due
ol e potyeenan to v,, vs, ... uncertainties.
Ao

“While the widths of the awayside jet peaks are suggestive of medium-induced
broadening, they are highly-dependent on the shape of the subtracted background,...”

My 1dea 1s to use acoustic scaling to constrain v,,v,... from v,
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In arXiv: 1105.3782v2 they claim that from hydrodynamics and kinetic
theory, for a fixed 1nitial collision geometry (centrality) one should get:
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constant, independent of p;

It works for PHENIX,v,,v,,v,
data from PRL 107(2011)
252301. I checked it myself
using Excel. Will allow us to
measure hard-scattering
correlations with good
constraint on flow: know v,
know everything.

I didn’t do it yet because I was too busy
working on Constituent-Quark Participants
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New STAR Jet results this year
show very different behavior
than Jets measured at LHC
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STAR

Charged jets QM2014
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Charged jet Ry, results: different from single particle Ry,
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0-5% Centrality ®  PHENIXx® Au+Au200GeV
B 0-3 + +
]
f
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Gets worse with increasing cone size

At LHC Jet and single particle Ry, ~ equal for pr>40 GeV/c
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The disagreement gets worse with larger R

r-a

R,s (Au+Au/PYTHIA)

R, (Au+Au/PYTHIA)

Charged jets Charged jets
18 o~ 18 o
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So, even after 14 runs at RHIC, the jet learning
curve still has a way to go. One solution i1s to
make a new detector to find jets by the more
traditional method using Hadron Calorimetry
with continuous coverage, large acceptance,

Ap=2m, Inl<1.1, and high rate capability to get

to ~60 GeV jets to overlap with the LHC
measurements.
This 1s the sSPHENIX proposal
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PHIKENIX
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e BaBar Magnet 1.5T
PH<ENIX’ s

Coverage Inl < 1.1

All silicon tracking
Heavy flavor tagging

— Electromagnetic
Calorimeter

Segment Hadronic
Calorimeter

Common Silicon Photomultiplier readout for Calorimeters
Full clock speed digitizers, digital information for triggering
——— H1gh data acquisition rate capability ~ 10 kHz
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CCOR 1977 First thin coil BABAR thin coil superconducting
superconducting solenoid solenoid r=1.5m being shipped
detector at a collider r=70cm from Ansaldo, Italy to SLAC 1997.
Will be shipped to BNL soon.
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It’s not a Turkey, 1t’s a PHENIX
convergent evolution?

2024
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PHENIX PRL109 (2012) 242301

d+Au |, = 200 GeV |
1.5 o mw+tt B!

< 4 K+K* -
s b S oF d+Au @o \{sN =200 GeV
o - (a) 0-20%

1 iy ¥ 1
I e ' T
+ e o4 [ al +
[ . 'l[." Ei* Ei*! [9] lolT - +“+- o ou-2lile)
il ﬁ i i o CinIng

i i g

I < r

oL T T T 1.5

2 3 4 5 0 1 2 3 4 0 2 3 4 6 oc C

P, (GeV/c) P, (GeV/c) P, (GeV/c) -

1

No effect in dAu (R, ,=1) with the exception of -
dA 0.5 -

protons which have a huge enhancement (Cronin
Effect). A common explanation of the dAu and AuAu p; [GeV/c]
baryon enhancements for pp<6 GeV/c 1s needed.

But direct e* from heavy charm

Note the absence of any Centrality effect mesons have a Cronin Effect.
for light mesons in dAu in this py range. Peripheral 60-88 looks reasonable.
PHENIX arXiv:]304.3410 —
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BNL-Barnes, Samios et al., PRL12, 204 (1964)

For more on Constituent quarks in QCD see

E. V. Shuryak, Nucl. Phys. B 203, 116 (1982).
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T
10 o T T The Wounded Nucleon (Npart) Model agrees with
10'k e A+ QA oo data for 1 order of magnitude but disagrees for

N o D+ D the other 10 orders of magnitude. The Additive
1 -\ WNM,AQM | Quark Model (AQM) [wounded projectile quarks] is
E 10" \ T.Ochiai in excellent agreement over the entire distribution.
o } 3 . ’ -
™~ \ ZPC35,209(86) — T
-E 10-2- "g‘& ‘ 1 - 0.8 PRELIMINARY 1
3 ! \| | i ua ]
0%?"10' * \ (?)0.6_ “‘330"/”0000..¢ + 2
N 4 . Y ? b
b 10 - * 04 r pp——? ¢ T

e -5 - )f -
10°F ‘ ‘\1 - 0.2l i
10-6— :L" I OO | _ﬂlr_ ] 48 I 4IL2 | IIG 1 2IO - 2I4 l 28
10-7_ 4 EY (Gev)

L T , A youngster, Bill Zajc, and other Penn collaborators

0 5 10 15 20 25 30 35| claimed that failure of WNM was due to jets. BUT,

EEI'- (GeV} from measured sphericity, E° i§ not jetty ig pp for E°;
BCMOR PLB168(1986)158 <10.GeV, fqur 0rder§ of magnitude down In Cross
section. No jet effect in whole measured region in o-a.
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Events/integrated luminosity (cm?)

1073

10-36

10-37

10-38

EP (GeV)

COR PLB126(1983)132 E; in A®=2m,
Inl<0.8 EMCal. Break above 20 GeV is due
to jets. Also see NuclPhys B244(1984)1
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Collective interaction of QCD strings and

early stages of high multiplicity pA collisions

Tigran Kalaydzhyan and Edward Shuryak

arXiv:1404.1888

Department of Physics and Astronomy, Stony Brook University,
Stony Brook, New York 11794-8800, USA
(Dated: April 8, 2014)

We study early stages of “central” pA and peripheral AA collisions. Several observables indicate
that at the sufficiently large number of participant nucleons the system undergoes transition into a
new “explosive” regime. By defining a string-string interaction and performing molecular dynam-
ics simulation, we argue that one should expect a strong collective implosion of the multi-string
“spaghetti” state, creating significant compression of the system in the transverse plane. Another
consequence is collectivization of the “sigma clouds” of all strings into collective chorally symmetric
fireball. We find that those effects happen provided the number of strings Ns > 30 or so, as only
such number compensates small sigma-string coupling. Those finding should help to understand
subsequent explosive behavior, observed for particle multiplicities roughly corresponding to this

number of strings.

I. INTRODUCTION
A. The evolving views on the high energy collisions

Before we got into discussion of high multiplicity pA
collisions, let us start by briefly reviewing the current
views on the two extremes: the AA and the minimum
bias pp collisions.

The “not-too-peripheral” AA we will define as those
which have the number of participant nucleons N, > 40,
and the corresponding multiplicity of the order of few
hundreds. (Peripheral AA, complementary to this def-
inition, we will discuss in this paper, below in sec-
tion TV B.) Central AA collisions produce many thou-
sands of secondarles the correspondlng ﬁreball has the
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FIG. 1:  The upper plot reminds the basic mechanism of

two string production, resulting from color reconnection. The

lower plot is a sketch of the simplest multi-string state, pro-

duced in pA collisions or very peripheral AA collisions, known
s “spaghetti”.



Hui Wang, BNL-STAR

Allows us to manipulate the 1nitial geometry and study:

 How multiplicity depends on N, and N, They won'’t be happy

coll
« Path-length dependence of jet quenching
» Particle production in heavy-ion collisions

» Other effects most importantly v, in central collisions
U+U Collisions

7™

Au+Au Collisions

Oblate

Prolate

Can we see a difference between Au+Au and U+U and

preferentially select body-body or tip-tip U+U collisions?
VJASaence BROUKHEVEN HighpTLHC14 PHPEENIX M. J. Tannenbaum 54




In two-component model, multiplicity depends on the N, and
N, and since v, is propotional to initial eccentricity

part

nAA x npp [(1 - xhard) + xharcholl]

Npart=1 0
NcoII= 3

*Idealizations

00000 > < 00000
Npar= 10

Ncoll_ 25

If dN/dn depends on N Iarge dN/d n should correlate with small v,,.

coll

_Central U+U collisions are ideal for testing particle production

Strategy: select events with few spectators (fully over-lapping), then
measure Vv, vs. multiplicity: how strong is_the correlation?
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>

coll»

\ ‘ 4 \ A\ ‘
small v,and large N,

If dN/dn depends on N

part

nAA x npp[(l - xhard)

O00BS> <SO000
Npart= 10
NcoII= 25

In two-component model, multiplicity depends on the N, and
, and since v, is propotional to initial eccentricity

+ xharcholl]
o o
e > < o
o o
o ®
Npart=1 0
NcoII= S
*idealizations

This is wrong
they will be
disappointed

large dN/dn should correlate with small v,.

o> Central U+U collisions are ideal for testing particle production

Strategy: select events with few spectators (fully over-lapping), then

b= ostice o TIEASUIE V, VS, multiplicity: how strong is-the correlation?
HIGER OF e e 2 ram 5 \/ = gEws
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0.1 - _
N : ¢ No evidence of knee
reliminary -
009 - X : i structure for central U+U
’ 9 n v Glauber plus 2-component model
0.08 _EJ suggests knee structure at ~2% centrality
F v Knee washed out by additional
0.07 E multiplicity fluctuations?1
- v Other interpretations?
0.06 .
> 0.05 "Maciej Rybczy_ski, et. al.
Phys.Rev. C87 (2013) 044908

0.04
0.03

- = U+U,v {4
0.02 ' 2{ }

-| ° Au+Au,v 2{2} .
0.01 |

-l ° AutAu,v {4 '{- L

[ | | 1 I 1 1 1 1 | 1 | | | | % I | 1

00 200 400 600 800 1000
dN/dn

Dashed lines represent top centrality percentages for U+U collisions based on multiplicity, curves are used to guide the eye
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0.1 - _
N I h No evidence of knee
reliminary -
0.09 - X : i structure for central U+U
’ 9 n v Glauber plus 2-component model
0.08 _EJ suggests knee structure at ~2% centrality
F v Knee washed out by additional
0.07 E multiplicity fluctuations?1
- v Other interpretations?
0.06 L
=~"'0.05 "Maciej Rybczy_ski, et. al.
Phys.Rev. C87 (2013) 044908
0.04
0.03 The U+U v,{4} results are
-l o« U+U, v {4} non-zero in central
0.02 [ 2
— v~ Result of intrinsic prolate shape of
0.01 o AU+AU, v 2{2} o the Uranium nucleus
: :_ v Au v_{4}4 becomes consistent with
= m] AU'I'IAU; V 7{4 + | : | zero
00 200 400 600 800 1000
dN/dn

Dashed lines represent top centrality percentages for U+U collisions based on multiplicity, curves are used to guide the eye
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0.1
#s%m riminary 3 ¢ No evidence of knee
0.09 = A : ; structure for central U+U
- 0.1% - v/ Glauber plus 2-component model
0.08 o0, = F o suggests knee structure at ~2% centrality
.5%&30 ...o G o '
o° %, "o.. = o barngl + v Knee washed out by additional multiplicity
0.07 % e 0 C nRpono lJI] fluctuations?1
- v Other interpretations?
0.06 C
010600800 %00
>"0.05 dN/dn "Maciej Rybczyfiski, et. al.
. Phys.Rev. C87 (2013) 044908
0.04 1% L 0. 01 %
O e, ] :
) 0. 1% :
0.03 * U+U,v 2{2} o, f The U+U v,{4} results are
a .
— . U+U, \V/ {4} O, .H' ° ;’ LI } non-zero in central
0.02 [ 2 8 *
— D . . .
— v/ Result of intrinsic prolate shape of
0.01 o ° AU+AU, v 2{2} DD + * + the Uranium nucleus
. E o AU+AU, v 7{4} % : Egéu v _{4}4 becomes consistent with
O — 1 1 1 l 1 1 1 1 1 1 1 1 1 l : 1 k 1: I 1
0 200 400 600 800 1000
dN/dn

Dashed lines represent top centrality percentages for U+U collisions based on multiplicity, curves are used to guide the eye
v,{4} data: we see the prolate shape of the Uranium nucleus v
The lack of a knee indicates a weakness in Ncoll multiplicity models
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e 1) It was an introduction: the material has been covered in previous Highp LHC lectures
and proceedings by me;
* New this year: I wrote a book with Jan Rak with all this kind of information, “High p;

physics in the Heavy Ion Era”

High-pT Physics in the Heavy Ion Era
Jan Rak, University of Jyvaskyla, Finland
Michael J. Tannenbaum, Brookhaven National Laboratory, New York

Hardback

Series: Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology(No. 34)
ISBN:9780521190299

396pages

202 b/w illus.

Dimensions: 247 x 174 mm
Weight: 0.87kg

Availablity: In Stock

$115.00 (C)

View other formats: Adobe eBook Reader

Aimed at graduate students and researchers in the field of high-energy nuclear physics, this book provides an overview of
the basic concepts of large transverse momentum particle physics, with a focus on pQCD phenomena. It examines high-
pT probes of relativistic heavy-ion collisions and will serve as a handbook for those working on RHIC and LHC data
analyses. Starting with an introduction and review of the field, the authors look at basic observables and experimental
techniques, concentrating on relativistic particle kinematics, before moving onto a discussion about the origins of high-pT
physics. The main features of high-pT physics are placed within a historical context and the authors adopt an
experimental outlook, highlighting the most important discoveries leading up to the foundation of modern QCD theory.
Advanced methods are described in detail, making this book especially useful for newcomers to the field.

http://www.cambridge .org/knowledge/discountpromotion‘7code:E3RAK
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e BaBar Magnet 1.5T
PH<ENIX’ s

Coverage Inl < 1.1

All silicon tracking
Heavy flavor tagging

— Electromagnetic
Calorimeter

Segment Hadronic
Calorimeter

Common Silicon Photomultiplier readout for Calorimeters
Full clock speed digitizers, digital information for triggering
——— H1gh data acquisition rate capability ~ 10 kHz
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